A positivity-preserving ALE finite element scheme for convection-diffusion equations in moving domains

نویسندگان

  • Oleg Boiarkine
  • Dmitri Kuzmin
  • Suncica Canic
  • Giovanna Guidoboni
  • Andro Mikelic
چکیده

A new high-resolution scheme is developed for convection–diffusion problems in domains with moving boundaries. A finite element approximation of the governing equation is designed within the framework of a conservative Arbitrary Lagrangian Eulerian (ALE) formulation. An implicit flux-corrected transport (FCT) algorithm is implemented to suppress spurious undershoots and overshoots appearing in convection-dominated problems. A detailed numerical study is performed for P1 finite element discretizations on fixed and moving meshes. Simulation results for a Taylor dispersion problem (moderate Peclet numbers) and for a convection-dominated problem (large Peclet numbers) are presented to give a flavor of practical applications. 2011 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

Analysis of a Stabilized Finite Element Approximation of the Transient Convection-Diffusion Equation Using an ALE Framework

In this paper we analyze a stabilized finite element method to approximate the convection-diffusion equation on moving domains using an arbitrary Lagrangian Eulerian (ALE) framework. As basic numerical strategy, we discretize the equation in time using first and second order backward differencing (BDF) schemes, whereas space is discretized using a stabilized finite element method (the orthogona...

متن کامل

A new approach to enforcing discrete maximum principles in continuous Galerkin methods for convection-dominated transport equations

This paper presents a set of design principles and new algorithmic tools for enforcing maximum principles and/or positivity preservation in continuous finite element approximations to convection-dominated transport problems. Using a linear first-order advection equation as a model problem, we address the design of first-order artificial diffusion operators and their higherorder counterparts at ...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

An Algebraic Flux Correction Scheme Satisfying the Discrete Maximum Principle and Linearity Preservation on General Meshes

This work is devoted to the proposal of a new flux limiter that makes the algebraic flux correction finite element scheme linearity and positivity preserving on general simplicial meshes. Minimal assumptions on the limiter are given in order to guarantee the validity of the discrete maximum principle, and then a precise definition of it is proposed and analyzed. Numerical results for convection...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 230  شماره 

صفحات  -

تاریخ انتشار 2011